
Intermediate GIT

Maxime Rio

February 25, 2020

Today’s menu

I Additional handy commands (45 min)

I Break (15 min)

I Branching (45 min)

I Break (15 min)

I Collaborative platforms (45 min)

I Bonus or lunch :-)

Bash memo

I pwd: print working directory
I ls: list directory content
I man: display manual (Q to exit pager)
I cd: change directory
I mkdir: make directory
I nano: text editor in the terminal (ˆ is ctrl key)
I cat: concatenate files, used to display one here

Git memo

I git config: set username, email, default editor. . .
I git init: initialize a git repository
I git status: display current status (e.g. modified files)
I git add: record changes for next commit (“staging”)
I git commit: save staged changes as a commit (snapshot)
I git log: display commit history
I git diff: files changes since last commit
I git show: display file content for a precise commit
I git checkout: travel between commits
I git remote: configure distant repository
I git push: send commit to another repository
I git pull: get new commits from another repository
I git clone: retrieve a local copy of a repository

Additional handy commands (45 min)

I git add/commit/push cycle

I git commit [-av] with long message

I .gitignore

I git reset

I git revert

I git stash

I gitk (and other viewers)

The electrophysiology of Vegetable Language (replication)

Figure 1: A pumpkin

Let’s write a fictitious paper to replicate Frisch and Graben, 2007:

I fork github.com/jennan/vegetable_language on Github
I clone your fork of the repository to your computer

Practice git add/commit/push

Commit as often as possible, i.e. as often as saving documents.

I add Introduction section to the README.md file
nano README.md
git add README.md
git commit -m "add intro section title"

I add Methods section to the README.md file, and push
nano README.md
git add README.md
git commit -m "add methods section title"
git push

Faster/better commits with git commit -av

I useful optional flags for the git commit command
I flag -a (or --all) to automatically stage changed files
I /!\ you still need to manually add new files /!\
I flag -v (or --verbose) to see differences in commit message

I add Results section
nano README.md
git commit -av
git status

I add Discussion section
nano README.md
git commit -am "add discussion section"
git status
git log

Ignoring things using .gitignore file

I create a junk file and a spurious folder
cp README.md README.md~
mkdir tmp
nano tmp/more_junk_file.txt
git status

I create a .gitignore file
nano .gitignore
git add .gitignore
git commit -m "Ignore junk files"
git status

Note: local vs. user’s .gitignore files

Remove changes using git reset
I make some changes to README.md and stage (no commit)

nano README.md
git add README.md
git status

I unstage changes using git reset

git reset README.md
git status
git diff

I remove all changes (to all file) using git reset --hard

git reset --hard
git status
git diff

Note: remember git checkout to remove changes for one file

Undo changes with git revert

I create a new commit to undo a previous commit

I remove README.md and commit
rm README.md
git commit -am "remove README.md"
ls -la

I recover the file by undoing the last commit
git revert HEAD
ls -la
git log

Note: useful if changes already pushed

Temporary discard changes with git stash

I make some changes to README.md (no commit)
nano README.md # add a bit of context in the intro
git status
cat README.md

I aaarg, boss wants to see last clean version, use git stash!
git stash
cat README.md

I back to work, recover changes and commit
git stash pop
cat README.md
git commit -av

Note: git stash list and git stash drop

Viewers: gitk and friends

I gitk is available everywhere

I other graphical/cli clients: gitg, kraken, sourcetree, tig. . .

I I personally use them to look at commits and files history.

Branching (45 min)

I git checkout [-b]

I git branch

I git push -u

I git merge

I feature branch workflow

What is a branch?

What is a branch?

Master
file A

Local

What is a branch?

Master

Branch
new file C

new file Bfile A

change file A

Local

What is a branch?

Master

Branch
new file C

new file Bfile A

change file A

Local

Master

Branch
new file C

new file Bfile A

change file A

Distant
Push

What is a branch?

Master

Branch
new file C

new file Bfile A

change file A

new file B
new file C
change file A

Local

Master

Branch
new file C

new file Bfile A

change file A

Distant

What is a branch?

Master

Branch
new file C

new file Bfile A

change file A

new file B
new file C
change file A

Local

Master

Branch
new file C

new file Bfile A

change file A

new file B
new file C
change file A

Distant
Push

Create a branch, switch branches

I create a new branch called abstract and switch to it
git status
git checkout -b abstract
git status

I add some content unique to this branch
nano ABSTRACT.md # create an abstract
git add ABSTRACT.md
git commit -m "WIP abstract"

I switch back and forth using checkout

git checkout master
ls
git checkout abstract
ls

Local vs. distant branches

I display local and distant branches
git branch -a

I create a distant branch by pushing
git checkout abstract
git push # try to push, read git suggestion
git push -u origin abstract

I check the new distant branch (also on Github)
git branch -a
gitk # brrr graphical interface

Delete branches
I create a dummy branch, say fake_data, and push it

git checkout master
git checkout -b fake_data
git push -u origin fake_data
git status

I delete distant branch using push (or Github)
git push origin --delete fake_data
gitk

Note: if using github, update local repo using git fetch -p

I delete local branch using -d (or -D)
git checkout master # switch to another branch
git branch -d fake_data
gitk

Note: use -D to delete non-dummy/non-merged branches

Merge branches – easy case
I let’s add a bit more content to master

git checkout master
nano README.md # discuss subjects in methods
git commit -am "Add subjects"

I merge abstract branch
git status
git merge abstract

I contemplate
ls -la
gitk

Merge branches – easy case
I let’s add a bit more content to master

git checkout master
nano README.md # discuss subjects in methods
git commit -am "Add subjects"

I merge abstract branch
git status
git merge abstract

I contemplate
ls -la
gitk

Merge branches – not so easy case
I switch to a methods branch and edit methods

git checkout -b methods
nano README.md # explain (in)coherent sentences
git commit -am "explain paradigm"

I switch to master branch and change same text
git checkout master
nano README.md # add electrodes locations
git commit -am "ephys explanations"

I enjoy a good conflict (or redo)
git merge methods
git status

Merge branches – not so easy case
I switch to a methods branch and edit methods

git checkout -b methods
nano README.md # explain (in)coherent sentences
git commit -am "explain paradigm"

I switch to master branch and change same text
git checkout master
nano README.md # add electrodes locations
git commit -am "ephys explanations"

I enjoy a good conflict (or redo)
git merge methods
git status

Content of README.md during conflict

The electrophysiology of Vegetable language...

[...]

<<<<<<< HEAD
Eletrodes are located at Cz and Pz.
=======
Subjects are exposed to coherent and incoherent...
>>>>>>> methods

Results

[...]

Fix conflicts

I edit conflicts and bring back peace in the repository
nano README.md
git add README.md
git status
git commit -av

I emergency command to cancel (then redo from merge)
git merge --abort

I use a merge tool, I personally like meld
git mergetool # brrr again a graphical tool

Feature branch workflow

I master always contains working version
I create a branch for each new feature
I merge to master as soon as feature is ready
I bonus: keep history relatively clean

Master

Feature

Feature

Note: This is the GitHub flow flavor.

Collaborative platforms (45 min)

I fork and pull requests

I tickets systems

I good practices (be a good commitizen)

Fork and pull requests

Github (and bitbucket, gitlab etc.) platform to collaborate:

1. fork the repository of interest

2. make relevant changes (bug fix, new feature. . .)

3. politely request the owner to pull your code in his repository

Pull requests – contributor side

Pull requests – contributor side

Pull requests – code owner side

Pull requests – practice

I pair up with your neighbor
I one is the owner, and one is the contributor

/!\ contributor deletes its local copy of vegetable_language

Create a pull request

I contributor forks vegetable_language repo from owner
I contributor clones it and make some changes
I contributor creates a pull request

Integration of the pull request

I owner reviews the pull request, ask for more stuff
I contributor adds more commits to update the pull request
I owner accepts (or not) final changes

Tickets systems

Organize issues, feature request, milestones etc.

Issues can be linked with tickets:

I web browser: create a ticket, asking for more content

I terminal:
I create a new commit
I use closes #<issue number> in the commit message
I push the commit

I web browser: check issue status

Good practices

Convention for commit messages:

I short first line (max ~80 characters) to describe changes
I blank line
I paragraph to give more context, details. . .

Pull request:

I make sure your work is wanted before starting it
I create a separate feature branch
I keep author(s) conventions (code, commit titles, provide tests

if needed)
I ask for help if it’s your first pull request

Tickets:

I provide a minimally reproducible example, see Stack Overflow

https://stackoverflow.com/help/minimal-reproducible-example

Bonus

I git tag
I git blame
I git cherry-pick
I git rebase
I git subtree
I git filter-branch
I stackoverflow
I stackoverflow
I stackoverflow
I stackoverflow
I stackoverflow
I stackoverflow

